Evolutionary algorithms based design of multivariable PID controller
نویسندگان
چکیده
In this paper, performance comparison of evolutionary algorithms (EAs) such as real coded genetic algorithm (RGA), modified particle swarm optimization (MPSO), covariance matrix adaptation evolution strategy (CMAES) and differential evolution (DE) on optimal design of multivariable PID controller design is considered. Decoupled multivariable PI and PID controller structure for Binary distillation column plant described by Wood and Berry, having 2 inputs and 2 outputs is taken. EAs simulations are carried with minimization of IAE as objective using two types of stopping criteria, namely, maximum number of functional evaluations (Fevalmax) and Fevalmax along with tolerance of PID parameters and IAE. To compare the performances of various EAs, statistical measures like best, mean, standard deviation of results and average computation time, over 20 independent trials are considered. Results obtained by various EAs are compared with previously reported results using BLT and GA with multi-crossover approach. Results clearly indicate the better performance of CMAES and MPSO designed PI/PID controller on multivariable system. Simulations also reveal that all the four algorithms considered are suitable for off-line tuning of PID controller. However, only CMAES and MPSO algorithms are suitable for on-line tuning of PID due to their better consistency and minimum computation time. 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Decentralized Fuzzy-PID Based Control Model for a Multivariable Liquid Level System
Multivariable liquid level control is essential in process industries to ensure quality of the product and safety of the equipment. However, the significant problems of the control system include excessive time consumption and percentage overshoot, which result from ineffective performance of the tuning methods of the PID controllers used for the system. In this paper, fuzzy logic was used to t...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملEvolutionary Design of Polynomial Controller
In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme ...
متن کاملA New Biogeography-based Optimization Approach Based on Shannon-wiener Diversity Index to Pid Tuning in Multivariable System
Abstract. Proportional-integral-derivative (PID) control is the most popular control architecture used in industrial problems. Many techniques have been proposed to tune the gains for the PID controller. Over the last few years, as an alternative to the conventional mathematical approaches, modern metaheuristics, such as evolutionary computation and swarm intelligence paradigms, have been given...
متن کاملA Genetic-Based Design of Auto-Tuning Fuzzy PID Controllers
This paper presents genetic algorithms (GAs) to perform the optimal design of an auto-tuning fuzzy proportional-integral-derivative (PID) controller and to determine the minimal number of fuzzy rules simultaneously. Different from PID controllers with fixed gains, the fuzzy PID controller is expressed in terms of fuzzy rules, in which the input variables are the error signals and their derivati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009